歡迎光臨~庫納格流體控制系統(tǒng)(上海)有限公司
語言選擇:
∷
產(chǎn)品中心
樣本資料
產(chǎn)品圖片
新聞中心
搜 索
Toggle navigation
導(dǎo)航菜單
網(wǎng)站首頁
新聞中心
常見問題
品牌資訊
行業(yè)應(yīng)用
產(chǎn)品中心
電磁閥
二級墨盒
閥組電磁閥
控制芯片
微型泵
過程控制閥
耐腐蝕接頭配件
其它產(chǎn)品
國外品牌(貿(mào)易)
樣本下載
KUNAG
其它資料
人才招聘
在線詢價
電商店鋪
1688阿里店鋪
企業(yè)淘寶店鋪
KUNAG 電商
社區(qū)論壇
聯(lián)系我們
常見問題
磁性材料及其磁性工程研究
磁性材料指具有強的磁性及工程應(yīng)用價值的材料。大抵可分為:「永久磁性材料」、「暫時磁性材料」及「半永久磁性材料」三大類。它們廣泛地應(yīng)用於電子、電機、資訊、機械及交通等產(chǎn)業(yè)上。本文簡介磁性的由來、各類磁性材料的特性與功用。磁性材料(magneticmaterials)系你我周遭俯拾即是的材料。較醒目的,如白板上的磁鐵、磁性跳棋下面的磁石、指南針、錄音帶、磁頭、軟式磁碟片等等;另外有更大量包裝在某些裝置裏面的磁性材料,如馬達、電視機、變壓器、汽車等等內(nèi)部,不一而足??梢哉f,磁性材料已與現(xiàn)代人的生活息息相關(guān)。在材料科學(xué)的領(lǐng)域內(nèi),它回類在「電子材料」裏面(與導(dǎo)電材料、盡緣體、半導(dǎo)體等并列)。但具有磁性之材料又涵蓋金屬材料、陶瓷材料,甚至於高分子材料。它的形態(tài)還包括塊料(b1uk)、粉體(particulate)及薄膜(thinfilm)等。因此磁性材料本身為具有多元化角色的材料。以物理學(xué)的觀點來說,任何材料都是磁性材料,也就是說,每一種材料都有一定的磁現(xiàn)象。有的在磁場內(nèi)會抵消一小部分磁場強度,呈現(xiàn)「反磁性」(diamagnetism),如銅;有的在磁場內(nèi)有微小的正感應(yīng),呈現(xiàn)「順磁性」(paramagnetism),如空氣;有的在磁場內(nèi)會感應(yīng)產(chǎn)生很強的磁性量——稱為磁化量(magnetization),呈現(xiàn)鐵磁性(ferromagnetism,又稱強磁性)或者亞鐵磁性(ferrimagnetism,又稱亞強磁性)等種類繁多。在產(chǎn)業(yè)上,只有具強磁性或亞強磁性的材料才能加以利用。但在物理、化學(xué)及醫(yī)學(xué)上,其他類型的磁性也有很大的功用。最有趣的例子是,醫(yī)學(xué)上利用人體器官分子的磁共振,可以迅速作完全身健康檢查,由器官分子的「磁性」,可以檢測病變之有無,所使用的設(shè)備叫做MRI(magneticresonanceimaging)。在此,只擬介紹產(chǎn)業(yè)應(yīng)用價值較大的強磁性及亞強磁性材料(永久及暫時磁性材料;半永久性者種類及應(yīng)用較少,限於篇幅不談)。磁性的由來直到二十世紀以前,人們(包括科學(xué)家)對物質(zhì)磁性的了解,不會比我們的老祖宗在數(shù)百、甚至於數(shù)千年前的了解好到那裏往。最近七十多年來,靠著很多受過嚴密科學(xué)練習(xí)的物理家、化學(xué)家及數(shù)學(xué)家不斷的努力,終能逐漸解開它神秘的面紗,一窺其全貌。讓我們循著先哲的路線來了解磁性的起源。由實驗得知,兩磁極間有相吸或相斥之力,稱為磁力。因此由力的丈量,可以得知「磁」的大小。有力就會有力矩,因磁所起的力矩稱為「磁矩」(magneticmoment)。早期科學(xué)家(例如法拉第、居里等人)嘗試在磁場內(nèi)丈量物質(zhì)所含磁矩之大小及其隨溫度變化的關(guān)系,從而發(fā)現(xiàn)不同物質(zhì)的不同反應(yīng)。一物體所含磁矩之量稱為「磁化量」。單位磁場所能引起的磁化量稱為「磁化率」(magneticsusceptibility),由磁化率對溫度的定量關(guān)系,吾人便可定義反磁性、順磁性及強磁性等的不同。但何以如此?仍然沒有答案。首先,磁矩是什麼呢?若將磁鐵一再分割,每一新得之顆粒皆為一新的磁鐵,具有南、北(N、S)極,分割到最小而仍會保有N、S兩極的即為磁矩。目前,我們已知電子自旋或公轉(zhuǎn),就造成此種最小單位(比如電流繞
線圈
活動造成磁場)。換句話說,磁矩就是電子運動(公轉(zhuǎn)、自轉(zhuǎn)),未被抵消的凈量,亦即為磁陀(magneticspin)之凈值。除反磁性物質(zhì)以外,所有其他物質(zhì)在磁場內(nèi)都有或多或少的磁矩,可以定量地量測出來,很顯然地它們都含有磁性的原子(分子)。那麼強磁性是怎麼來的呢?何以同樣含有磁性原子而有的是強磁性,有的卻沒有呢?1907年,魏斯(Weiss)重復(fù)居理於1895年的實驗,再配合數(shù)學(xué)家藍古文(Langeuim)的理論,假設(shè)磁性「分子」(當時以為分子是物質(zhì)之最小單位)間有相互作用,稱為分子場(molecularfield),并大膽推斷非強磁性物質(zhì)之分子場很小,而強磁性物質(zhì)之分子場非常大,大到足以使「分子」之磁矩同向排列而達飽和。溫度高到居里點(編注:鐵磁性物質(zhì)由強磁性變?yōu)轫槾判詴r的溫度,稱為居里點)以上時,熱能破壞了分子場的排列作用,使磁性「分子」混亂,即為順磁性。然則,何以大部分鐵、鈷、鎳等強磁性元素不會吸引別的鐵、鈷、鎳呢?既然它們內(nèi)部已磁化到飽和,應(yīng)可作為很強的永久磁鐵才是啊。魏斯又提出另一個大膽假設(shè),那就是物系為降低自由能以達安定化,會進步亂度。強磁性物質(zhì)內(nèi)部自動分成很多小區(qū)域,稱為磁區(qū)(magneticdomain)。在同一磁區(qū)內(nèi)磁化方向是一致的,不同磁區(qū)間的磁化方向不同且呈混亂化,故互相抵消,平常感覺不到它有磁性,只有在磁場內(nèi)加以磁化,打破磁區(qū)之混亂狀態(tài),才能感受到它的強磁性。后人的實驗(1931年)印證此一「預(yù)言」(見圖一),使魏斯名垂千古,其大膽假設(shè)、小心求證的治學(xué)態(tài)度更是為人津津樂道的原則。1948年,魏斯的門生尼爾(Néel)繼續(xù)他的研究,發(fā)現(xiàn)某些物質(zhì)原子的磁矩受結(jié)晶格子影響很大,且分子場的作用很強,為負的,導(dǎo)致相鄰原子列之磁化方向相反。若大小相等則完全抵消,呈現(xiàn)「反強磁性」(antiferromagnetism)。若大小不等,則呈現(xiàn)「亞強磁性」;至此,物質(zhì)之「磁」現(xiàn)象原理已大致揭曉,尼爾因而在1970年榮獲諾貝爾物理獎。磁性材料的磁現(xiàn)象由磁區(qū)之消長來決定。磁區(qū)與磁區(qū)之間的界面稱為磁區(qū)壁(domainwall),其內(nèi)磁陀由一個方向逐漸轉(zhuǎn)至另一方向,它很薄,只有數(shù)十至數(shù)百埃(Å)。磁性材料的磁區(qū)壁假如能隨外加磁場的變動而隨時移動,該材料即是很輕易被磁化到飽和,也很輕易消磁;反之,假如想法阻礙磁區(qū)壁的運動,則被磁化到飽和后該材料便不易被消磁。前者呈現(xiàn)暫時磁性,后者呈現(xiàn)永久磁性。磁性材料學(xué)家的工作即在於:利用固態(tài)物理、材料工程學(xué)、物理冶金學(xué)、機械冶金學(xué)等學(xué)理或技術(shù),控制磁性材料的成分、顯微結(jié)構(gòu)而使其性質(zhì)合於所需。永久磁性材料及其應(yīng)用磁性材料的優(yōu)劣常以磁滯曲線(hysteresisloop,見圖二),所呈現(xiàn)的數(shù)據(jù)表示之。圖上OBs表磁化曲線,其上於原點的切線斜率稱為初導(dǎo)磁率(initialpermeability,μo),割線斜率代表特定的B/H(磁感應(yīng)/磁場強度)比值,最大者即為最大導(dǎo)磁率(μm)。Bs點代表飽和磁感應(yīng)(saturationinduction)單位以千高斯(kG)表示;Br點為殘留磁感應(yīng);Hc點稱為保磁力或矯頑磁力〔coerciveforce,單位為Oe或kOe,1Oe相當於(1000/4π)A/m〕。在第二象限之磁滯曲線上任一點都代表一特定之B×H值(對B、H投影線所圍面積),其最大者稱為最大磁能積〔maximumenergyproduct,簡寫為(BH)m,單位G.Oe,以百萬倍表之則為MGOe〕。永久磁性材料講究Hc、Br及(BH)m愈大愈好,尤其(BH)m,它代表該磁鐵磁化后所貯存在內(nèi)部的能量,(BH)m值愈大代表它愈能對外作功,就像永不枯竭的電池一樣,若Hc夠大(數(shù)千Oe以上),居里溫度夠高,它便不易被消(退)磁。工程上Hc>200Oe者,便可稱為永久磁鐵。十九世紀末至二十世紀初,可用的永久磁鐵只有淬火碳鋼。碳鋼淬火硬化,Hc即升高,愈硬者Hc愈高,故永久磁性又稱「硬」磁性;反之退火軟化者呈現(xiàn)暫時磁性,或「軟」磁性。淬火鋼Hc只有50~70Oe,(BH)m只有0.2~0.3MGOe。1916年,科學(xué)家在碳鋼內(nèi)添加Cr、W、Co,使Hc增至145~250Oe,(BH)m近於1MGOe,在當時是很大的突破。1931年日人三島發(fā)明Fe-Ni-Al三元合金磁鐵,Hc高達500Oe(BH)m則達1.4MGOe,打開近代永磁材料發(fā)展的大門。以Fe-Al-Ni為主,添加Co、Cu、Si、Ti等元素改進而成的Alnico合金,直到1970年以前一直是永久磁鐵的主流。材料科學(xué)家藉合金設(shè)計的法則,控制其相變化,使產(chǎn)生離相分解反應(yīng)(spinodaldecomposition);并在磁場內(nèi)冷卻,令分解所得之相沿磁場方向生長而得異方性很高的優(yōu)秀磁鐵,Hc達600~2000Oe,(BH)m為3~12MGOe間,可藉合金組成分及熱處理而調(diào)整磁性材料的特性。時至本日,雖大量更新式或價廉之永磁已逐漸取而代之,但它極為穩(wěn)定的磁性(可應(yīng)用至500℃之高溫,使它在某些特定的應(yīng)用(如微波通訊)上,仍然不易遭淘汰。1970年代發(fā)明之Fe-Cr-Co永磁合金即采用Alnico之原理設(shè)計出來,其磁性亦與Alnico合金相當,筆者曾作過多年研究,圖三即顯示利用磁場熱處理,使Fe28Cr-12Co-Ti合金的離相分解沿磁場方向排列的情況。分解出來的顆粒均勻直徑約300Å,均勻長度約1200Å,磁區(qū)壁在其內(nèi)之運動極其困難,故Hc值很高,成為永久磁鐵。1932~1938年間,在日、荷兩地開始發(fā)展的磁性氧化物——鐵氧體(ferrites),為本日永久磁性材料主流之一。鐵氧體的主要成分為Ba0.6Fe2O3及Sr0.6Fe2O3,屬於六方晶系;其Hc約1.8~3.2kOe,Br約2.2~4.3,(BH)m約1.0~4.0MGOe(視添加劑及裝程等而異)。由於價廉、制取輕易,應(yīng)用很廣,目前臺灣月需2,000余噸,約3/4自制。1969年,材料科學(xué)家研制成功稀土-鈷化物的永久磁鐵,為永久磁鐵開辟了另一片新天地。近二十年來,稀土永久磁鐵有長足進步。自最早之SmCo5合金而Sm(Co,Fe,Cu,Zr)7.2-8.5(即Sm2CO17型)合金,到最近的Nd2Fe14B合金(1984年起),磁能積從破紀錄的20MGOe(SmCo5)到30MGOe(Sm2Co17型)再到50MGOe(Nd-Fe-B合金),呈現(xiàn)奔騰式的進展,這都是回功於材料科學(xué)的研究與發(fā)展。國內(nèi)目前在這方面的研究與開發(fā)工作已與國際同步,產(chǎn)業(yè)產(chǎn)制也展開,為很有潛力的高科技產(chǎn)業(yè)。圖四為筆者所研究的Nd-Fe-B合金之高解像電子顯微鏡照片,顯示兩顆Nd2Fe14B晶粒間的粒界有一層體心立方(bcc)相的構(gòu)造,晶粒內(nèi)之平行線紋為c平面之格子像。其他的永磁材料還有很多,例如Cu-Ni-Co合金、Mn-Al-C合金及Pt-Co合金等,還有不下十余種,限於篇幅無法逐一介紹。在永久磁性材料中,有一些是體積很小而功效很大的「磁紀錄材料」(magneticrecordingmaterial):粉末狀的有γ-Fe2O3、CrO2、Fe4N,金屬粉如Fe粉、Fe-Co合金粉等,大量用於錄音帶、錄影帶、磁碟等產(chǎn)業(yè);另有制成薄膜狀的Fe-Ni、Fe-Ni-P、Fe-Ni-Cr、Fe-Ni-Co等用於硬式磁碟,Co-Cr用於垂直紀錄,Tb-Fe-Co及Gd-Co等用於可讀寫的磁光紀錄等。永磁材料如前所述是一貯能裝置,只要設(shè)計得當,它便能作功,上述之「紀錄」即為一例。其他的應(yīng)用場合包括:喇叭、馬達、發(fā)電機、計器、吸著裝置、磁選機等不勝枚舉。暫時磁性材料及其應(yīng)用暫時磁性材料系在受到磁化(例如繞在其外面的
線圈
通上電流時)后呈現(xiàn)很強的磁性,磁化場移除后,馬上消磁的材料。因此,可以用在交流電機上,甚至於高頻及超高頻的應(yīng)用場合。其應(yīng)用上的要求是導(dǎo)磁率及Bs值愈高愈佳,Hc值愈低愈佳(因此B×H值——代表磁損,愈?。?。以發(fā)展的歷程來說,暫時磁性材料(即軟磁材料)比永磁材料更早,而且成果較豐富。例如純鐵本身即為甚佳之軟磁材料,自十九世紀末即開始使用,目前的用量仍然很大。1910年代Fe-Ni合金即已由美國貝爾實驗室發(fā)明出來,后來稱為高導(dǎo)磁合金(permalloy);到1950年代其μ0值(見圖二)已可高達100,000,稱為超導(dǎo)磁合金(supermalloy)。其磁性受鎳含量、軋延及退火方式等的影響甚大。矽鋼片首創(chuàng)於1900年前后,至1930年制成方向性矽鋼片以來,它已成為電機用軟磁合金的主流。這些軟性合金因系導(dǎo)體,大多只適合於低頻應(yīng)用的場合。鐵氧體軟磁材料以尖晶石晶系為主;一般式為MFe2O4,M為二價離子,如Mn++、Zn++、Ni++、Cu++、Mg++、Co++,甚至於Fe++等,例如目前市面上最常見的(Mn,Zn)Fe2O4、(Ni,Zn).Fe2O4及(Mn,Mg)Fe2O4等。因鐵氧體軟磁材料系氧化物,電阻大,適用於高頻(100MHz以下的場合。若是超高頻,如100MHz~500GHz(微波范圍)則需柘榴石系鐵氧磁體——Y3Fe5O12及其衍生物。1958年,杜威齊(Duwez)發(fā)明非晶質(zhì)合金(amorphousalloy)裝置以來,非晶合金〔又稱為金屬玻璃(metallicglass)〕的磁性及機械性便非常受重視,并於1970~1980年間形成很大的一股研究高潮。美國Allied公司於1974年,開始推出商用的非晶薄帶,其Bs高達16kG,Hc極?。?.01Oe以下),電阻較矽鋼片高,因此用它制成變壓器,磁損遠低於矽鋼片者,為最被看好的下一世代軟磁性材料。軟磁性材料廣泛應(yīng)用於下列各方面:一通訊方面——電感器、濾波器、天線棒等。二電力方面——變壓器、馬達、發(fā)電機、阻流器等。三消費性產(chǎn)品方面——電視機偏向軛及馳返變壓器、阻流
線圈
等。四磁頭方面——錄音用磁頭(高導(dǎo)磁合金)、錄影用磁頭(Fe-Si-Al合金)、電腦用磁頭(Mn-Zn鐵氧體)等。五其他用途如磁遮蔽器、磁放大器、切換磁心及高級電磁鐵等。磁性材料是一多樣化的材料涵蓋金屬及非金屬(陶瓷),薄膜、粉粒及塊料;其應(yīng)用范圍廣及機械、電機、電子、資訊、交通、家用用具;其研究的基礎(chǔ)又有賴於固態(tài)物理、材料科學(xué)及材料工程。因此,磁性材料是一種「吸力很強」的材料,它在「兼容并蓄」中快速茁壯成長。我國的磁性材料產(chǎn)業(yè)已有近二十年的歷史,磁性材料研究則僅有十余年歷史,固然也小有成績,但與產(chǎn)業(yè)先進國家比較,仍落后甚遠,需要政府、企業(yè)界及學(xué)術(shù)界多方面配合,投進人力、財力,以提升磁性材料的技術(shù)層次。由於它是多樣化的技術(shù),其提升也能帶動其他相關(guān)技術(shù)的進步。我們鄰國日本對磁性材料的重視、提倡與投資,堪為我們的借鏡。參考資料1.B.D.Cullity,IntroductiontoMagneticMaterials,Addison-WesleyPub.Co.,1972.2.《磁性材料》產(chǎn)業(yè)技術(shù)研究院產(chǎn)業(yè)材料研究所技術(shù)資料1987年金重勛任教於清華大學(xué)材料科學(xué)工程系回答者:babi20boy-見習(xí)魔法師三級3-219:25【摘要】磁性材料指具有強的磁性及工程應(yīng)用價值的材料。大抵可分為:「永久磁性材料」、「暫時磁性材料」及「半永久磁性材料」三大類。它們廣泛地應(yīng)用於電子、電機、資訊、機械及交通等產(chǎn)業(yè)上。本文簡介磁性的由來、各類磁性材料的特性與功用。磁性材料(magneticmaterials)系你我周遭俯拾即是的材料。較醒目的,如白板上的磁鐵、磁性跳棋下面的磁石、指南針、錄音帶、磁頭、軟式磁碟片等等;另外有更大量包裝在某些裝置裏面的磁性材料,如馬達、電視機、變壓器、汽車等等內(nèi)部,不一而足??梢哉f,磁性材料已與現(xiàn)代人的生活息息相關(guān)。在材料科學(xué)的領(lǐng)域內(nèi),它回類在「電子材料」裏面(與導(dǎo)電材料、盡緣體、半導(dǎo)體等并列)。但具有磁性之材料又涵蓋金屬材料、陶瓷材料,甚至於高分子材料。它的形態(tài)還包括塊料(b1uk)、粉體(particulate)及薄膜(thinfilm)等。因此磁性材料本身為具有多元化角色的材料。以物理學(xué)的觀點來說,任何材料都是磁性材料,也就是說,每一種材料都有一定的磁現(xiàn)象。有的在磁場內(nèi)會抵消一小部分磁場強度,呈現(xiàn)「反磁性」(diamagnetism),如銅;有的在磁場內(nèi)有微小的正感應(yīng),呈現(xiàn)「順磁性」(paramagnetism),如空氣;有的在磁場內(nèi)會感應(yīng)產(chǎn)生很強的磁性量——稱為磁化量(magnetization),呈現(xiàn)鐵磁性(ferromagnetism,又稱強磁性)或者亞鐵磁性(ferrimagnetism,又稱亞強磁性)等種類繁多。在產(chǎn)業(yè)上,只有具強磁性或亞強磁性的材料才能加以利用。但在物理、化學(xué)及醫(yī)學(xué)上,其他類型的磁性也有很大的功用。最有趣的例子是,醫(yī)學(xué)上利用人體器官分子的磁共振,可以迅速作完全身健康檢查,由器官分子的「磁性」,可以檢測病變之有無,所使用的設(shè)備叫做MRI(magneticresonanceimaging)。在此,只擬介紹產(chǎn)業(yè)應(yīng)用價值較大的強磁性及亞強磁性材料(永久及暫時磁性材料;半永久性者種類及應(yīng)用較少,限於篇幅不談)。磁性的由來直到二十世紀以前,人們(包括科學(xué)家)對物質(zhì)磁性的了解,不會比我們的老祖宗在數(shù)百、甚至於數(shù)千年前的了解好到那裏往。最近七十多年來,靠著很多受過嚴密科學(xué)練習(xí)的物理家、化學(xué)家及數(shù)學(xué)家不斷的努力,終能逐漸解開它神秘的面紗,一窺其全貌。讓我們循著先哲的路線來了解磁性的起源。由實驗得知,兩磁極間有相吸或相斥之力,稱為磁力。因此由力的丈量,可以得知「磁」的大小。有力就會有力矩,因磁所起的力矩稱為「磁矩」(magneticmoment)。早期科學(xué)家(例如法拉第、居里等人)嘗試在磁場內(nèi)丈量物質(zhì)所含磁矩之大小及其隨溫度變化的關(guān)系,從而發(fā)現(xiàn)不同物質(zhì)的不同反應(yīng)。一物體所含磁矩之量稱為「磁化量」。單位磁場所能引起的磁化量稱為「磁化率」(magneticsusceptibility),由磁化率對溫度的定量關(guān)系,吾人便可定義反磁性、順磁性及強磁性等的不同。但何以如此?仍然沒有答案。首先,磁矩是什麼呢?若將磁鐵一再分割,每一新得之顆粒皆為一新的磁鐵,具有南、北(N、S)極,分割到最小而仍會保有N、S兩極的即為磁矩。目前,我們已知電子自旋或公轉(zhuǎn),就造成此種最小單位(比如電流繞
線圈
活動造成磁場)。換句話說,磁矩就是電子運動(公轉(zhuǎn)、自轉(zhuǎn)),未被抵消的凈量,亦即為磁陀(magneticspin)之凈值。除反磁性物質(zhì)以外,所有其他物質(zhì)在磁場內(nèi)都有或多或少的磁矩,可以定量地量測出來,很顯然地它們都含有磁性的原子(分子)。那麼強磁性是怎麼來的呢?何以同樣含有磁性原子而有的是強磁性,有的卻沒有呢?1907年,魏斯(Weiss)重復(fù)居理於1895年的實驗,再配合數(shù)學(xué)家藍古文(Langeuim)的理論,假設(shè)磁性「分子」(當時以為分子是物質(zhì)之最小單位)間有相互作用,稱為分子場(molecularfield),并大膽推斷非強磁性物質(zhì)之分子場很小,而強磁性物質(zhì)之分子場非常大,大到足以使「分子」之磁矩同向排列而達飽和。溫度高到居里點(編注:鐵磁性物質(zhì)由強磁性變?yōu)轫槾判詴r的溫度,稱為居里點)以上時,熱能破壞了分子場的排列作用,使磁性「分子」混亂,即為順磁性。然則,何以大部分鐵、鈷、鎳等強磁性元素不會吸引別的鐵、鈷、鎳呢?既然它們內(nèi)部已磁化到飽和,應(yīng)可作為很強的永久磁鐵才是啊。魏斯又提出另一個大膽假設(shè),那就是物系為降低自由能以達安定化,會進步亂度。強磁性物質(zhì)內(nèi)部自動分成很多小區(qū)域,稱為磁區(qū)(magneticdomain)。在同一磁區(qū)內(nèi)磁化方向是一致的,不同磁區(qū)間的磁化方向不同且呈混亂化,故互相抵消,平常感覺不到它有磁性,只有在磁場內(nèi)加以磁化,打破磁區(qū)之混亂狀態(tài),才能感受到它的強磁性。后人的實驗(1931年)印證此一「預(yù)言」(見圖一),使魏斯名垂千古,其大膽假設(shè)、小心求證的治學(xué)態(tài)度更是為人津津樂道的原則。1948年,魏斯的門生尼爾(Néel)繼續(xù)他的研究,發(fā)現(xiàn)某些物質(zhì)原子的磁矩受結(jié)晶格子影響很大,且分子場的作用很強,為負的,導(dǎo)致相鄰原子列之磁化方向相反。若大小相等則完全抵消,呈現(xiàn)「反強磁性」(antiferromagnetism)。若大小不等,則呈現(xiàn)「亞強磁性」;至此,物質(zhì)之「磁」現(xiàn)象原理已大致揭曉,尼爾因而在1970年榮獲諾貝爾物理獎。磁性材料的磁現(xiàn)象由磁區(qū)之消長來決定。磁區(qū)與磁區(qū)之間的界面稱為磁區(qū)壁(domainwall),其內(nèi)磁陀由一個方向逐漸轉(zhuǎn)至另一方向,它很薄,只有數(shù)十至數(shù)百埃(Å)。磁性材料的磁區(qū)壁假如能隨外加磁場的變動而隨時移動,該材料即是很輕易被磁化到飽和,也很輕易消磁;反之,假如想法阻礙磁區(qū)壁的運動,則被磁化到飽和后該材料便不易被消磁。前者呈現(xiàn)暫時磁性,后者呈現(xiàn)永久磁性。磁性材料學(xué)家的工作即在於:利用固態(tài)物理、材料工程學(xué)、物理冶金學(xué)、機械冶金學(xué)等學(xué)理或技術(shù),控制磁性材料的成分、顯微結(jié)構(gòu)而使其性質(zhì)合於所需。永久磁性材料及其應(yīng)用磁性材料的優(yōu)劣常以磁滯曲線(hysteresisloop,見圖二),所呈現(xiàn)的數(shù)據(jù)表示之。圖上OBs表磁化曲線,其上於原點的切線斜率稱為初導(dǎo)磁率(initialpermeability,μo),割線斜率代表特定的B/H(磁感應(yīng)/磁場強度)比值,最大者即為最大導(dǎo)磁率(μm)。Bs點代表飽和磁感應(yīng)(saturationinduction)單位以千高斯(kG)表示;Br點為殘留磁感應(yīng);Hc點稱為保磁力或矯頑磁力〔coerciveforce,單位為Oe或kOe,1Oe相當於(1000/4π)A/m〕。在第二象限之磁滯曲線上任一點都代表一特定之B×H值(對B、H投影線所圍面積),其最大者稱為最大磁能積〔maximumenergyproduct,簡寫為(BH)m,單位G.Oe,以百萬倍表之則為MGOe〕。永久磁性材料講究Hc、Br及(BH)m愈大愈好,尤其(BH)m,它代表該磁鐵磁化后所貯存在內(nèi)部的能量,(BH)m值愈大代表它愈能對外作功,就像永不枯竭的電池一樣,若Hc夠大(數(shù)千Oe以上),居里溫度夠高,它便不易被消(退)磁。工程上Hc>200Oe者,便可稱為永久磁鐵。十九世紀末至二十世紀初,可用的永久磁鐵只有淬火碳鋼。碳鋼淬火硬化,Hc即升高,愈硬者Hc愈高,故永久磁性又稱「硬」磁性;反之退火軟化者呈現(xiàn)暫時磁性,或「軟」磁性。淬火鋼Hc只有50~70Oe,(BH)m只有0.2~0.3MGOe。1916年,科學(xué)家在碳鋼內(nèi)添加Cr、W、Co,使Hc增至145~250Oe,(BH)m近於1MGOe,在當時是很大的突破。1931年日人三島發(fā)明Fe-Ni-Al三元合金磁鐵,Hc高達500Oe(BH)m則達1.4MGOe,打開近代永磁材料發(fā)展的大門。以Fe-Al-Ni為主,添加Co、Cu、Si、Ti等元素改進而成的Alnico合金,直到1970年以前一直是永久磁鐵的主流。材料科學(xué)家藉合金設(shè)計的法則,控制其相變化,使產(chǎn)生離相分解反應(yīng)(spinodaldecomposition);并在磁場內(nèi)冷卻,令分解所得之相沿磁場方向生長而得異方性很高的優(yōu)秀磁鐵,Hc達600~2000Oe,(BH)m為3~12MGOe間,可藉合金組成分及熱處理而調(diào)整磁性材料的特性。時至本日,雖大量更新式或價廉之永磁已逐漸取而代之,但它極為穩(wěn)定的磁性(可應(yīng)用至500℃之高溫,使它在某些特定的應(yīng)用(如微波通訊)上,仍然不易遭淘汰。1970年代發(fā)明之Fe-Cr-Co永磁合金即采用Alnico之原理設(shè)計出來,其磁性亦與Alnico合金相當,筆者曾作過多年研究,圖三即顯示利用磁場熱處理,使Fe28Cr-12Co-Ti合金的離相分解沿磁場方向排列的情況。分解出來的顆粒均勻直徑約300Å,均勻長度約1200Å,磁區(qū)壁在其內(nèi)之運動極其困難,故Hc值很高,成為永久磁鐵。1932~1938年間,在日、荷兩地開始發(fā)展的磁性氧化物——鐵氧體(ferrites),為本日永久磁性材料主流之一。鐵氧體的主要成分為Ba0.6Fe2O3及Sr0.6Fe2O3,屬於六方晶系;其Hc約1.8~3.2kOe,Br約2.2~4.3,(BH)m約1.0~4.0MGOe(視添加劑及裝程等而異)。由於價廉、制取輕易,應(yīng)用很廣,目前臺灣月需2,000余噸,約3/4自制。1969年,材料科學(xué)家研制成功稀土-鈷化物的永久磁鐵,為永久磁鐵開辟了另一片新天地。近二十年來,稀土永久磁鐵有長足進步。自最早之SmCo5合金而Sm(Co,Fe,Cu,Zr)7.2-8.5(即Sm2CO17型)合金,到最近的Nd2Fe14B合金(1984年起),磁能積從破紀錄的20MGOe(SmCo5)到30MGOe(Sm2Co17型)再到50MGOe(Nd-Fe-B合金),呈現(xiàn)奔騰式的進展,這都是回功於材料科學(xué)的研究與發(fā)展。國內(nèi)目前在這方面的研究與開發(fā)工作已與國際同步,產(chǎn)業(yè)產(chǎn)制也展開,為很有潛力的高科技產(chǎn)業(yè)。圖四為筆者所研究的Nd-Fe-B合金之高解像電子顯微鏡照片,顯示兩顆Nd2Fe14B晶粒間的粒界有一層體心立方(bcc)相的構(gòu)造,晶粒內(nèi)之平行線紋為c平面之格子像。其他的永磁材料還有很多,例如Cu-Ni-Co合金、Mn-Al-C合金及Pt-Co合金等,還有不下十余種,限於篇幅無法逐一介紹。在永久磁性材料中,有一些是體積很小而功效很大的「磁紀錄材料」(magneticrecordingmaterial):粉末狀的有γ-Fe2O3、CrO2、Fe4N,金屬粉如Fe粉、Fe-Co合金粉等,大量用於錄音帶、錄影帶、磁碟等產(chǎn)業(yè);另有制成薄膜狀的Fe-Ni、Fe-Ni-P、Fe-Ni-Cr、Fe-Ni-Co等用於硬式磁碟,Co-Cr用於垂直紀錄,Tb-Fe-Co及Gd-Co等用於可讀寫的磁光紀錄等。永磁材料如前所述是一貯能裝置,只要設(shè)計得當,它便能作功,上述之「紀錄」即為一例。其他的應(yīng)用場合包括:喇叭、馬達、發(fā)電機、計器、吸著裝置、磁選機等不勝枚舉。暫時磁性材料及其應(yīng)用暫時磁性材料系在受到磁化(例如繞在其外面的
線圈
通上電流時)后呈現(xiàn)很強的磁性,磁化場移除后,馬上消磁的材料。因此,可以用在交流電機上,甚至於高頻及超高頻的應(yīng)用場合。其應(yīng)用上的要求是導(dǎo)磁率及Bs值愈高愈佳,Hc值愈低愈佳(因此B×H值——代表磁損,愈小)。以發(fā)展的歷程來說,暫時磁性材料(即軟磁材料)比永磁材料更早,而且成果較豐富。例如純鐵本身即為甚佳之軟磁材料,自十九世紀末即開始使用,目前的用量仍然很大。1910年代Fe-Ni合金即已由美國貝爾實驗室發(fā)明出來,后來稱為高導(dǎo)磁合金(permalloy);到1950年代其μ0值(見圖二)已可高達100,000,稱為超導(dǎo)磁合金(supermalloy)。其磁性受鎳含量、軋延及退火方式等的影響甚大。矽鋼片首創(chuàng)於1900年前后,至1930年制成方向性矽鋼片以來,它已成為電機用軟磁合金的主流。這些軟性合金因系導(dǎo)體,大多只適合於低頻應(yīng)用的場合。鐵氧體軟磁材料以尖晶石晶系為主;一般式為MFe2O4,M為二價離子,如Mn++、Zn++、Ni++、Cu++、Mg++、Co++,甚至於Fe++等,例如目前市面上最常見的(Mn,Zn)Fe2O4、(Ni,Zn).Fe2O4及(Mn,Mg)Fe2O4等。因鐵氧體軟磁材料系氧化物,電阻大,適用於高頻(100MHz以下的場合。若是超高頻,如100MHz~500GHz(微波范圍)則需柘榴石系鐵氧磁體——Y3Fe5O12及其衍生物。1958年,杜威齊(Duwez)發(fā)明非晶質(zhì)合金(amorphousalloy)裝置以來,非晶合金〔又稱為金屬玻璃(metallicglass)〕的磁性及機械性便非常受重視,并於1970~1980年間形成很大的一股研究高潮。美國Allied公司於1974年,開始推出商用的非晶薄帶,其Bs高達16kG,Hc極?。?.01Oe以下),電阻較矽鋼片高,因此用它制成變壓器,磁損遠低於矽鋼片者,為最被看好的下一世代軟磁性材料。軟磁性材料廣泛應(yīng)用於下列各方面:一通訊方面——電感器、濾波器、天線棒等。二電力方面——變壓器、馬達、發(fā)電機、阻流器等。三消費性產(chǎn)品方面——電視機偏向軛及馳返變壓器、阻流
線圈
等。四磁頭方面——錄音用磁頭(高導(dǎo)磁合金)、錄影用磁頭(Fe-Si-Al合金)、電腦用磁頭(Mn-Zn鐵氧體)等。五其他用途如磁遮蔽器、磁放大器、切換磁心及高級電磁鐵等。磁性材料是一多樣化的材料涵蓋金屬及非金屬(陶瓷),薄膜、粉粒及塊料;其應(yīng)用范圍廣及機械、電機、電子、資訊、交通、家用用具;其研究的基礎(chǔ)又有賴於固態(tài)物理、材料科學(xué)及材料工程。因此,磁性材料是一種「吸力很強」的材料,它在「兼容并蓄」中快速茁壯成長。我國的磁性材料產(chǎn)業(yè)已有近二十年的歷史,磁性材料研究則僅有十余年歷史,固然也小有成績,但與產(chǎn)業(yè)先進國家比較,仍落后甚遠,需要政府、企業(yè)界及學(xué)術(shù)界多方面配合,投進人力、財力,以提升磁性材料的技術(shù)層次。由於它是多樣化的技術(shù),其提升也能帶動其他相關(guān)技術(shù)的進步。我們鄰國日本對磁性材料的重視、提倡與投資,堪為我們的借鏡。回答者:tutu9454-魔法學(xué)徒一級3-219:29磁性材料指具有強的磁性及工程應(yīng)用價值的材料。大抵可分為:「永久磁性材料」、「暫時磁性材料」及「半永久磁性材料」三大類。它們廣泛地應(yīng)用於電子、電機、資訊、機械及交通等產(chǎn)業(yè)上。本文簡介磁性的由來、各類磁性材料的特性與功用。磁性材料(magneticmaterials)系你我周遭俯拾即是的材料。較醒目的,如白板上的磁鐵、磁性跳棋下面的磁石、指南針、錄音帶、磁頭、軟式磁碟片等等;另外有更大量包裝在某些裝置裏面的磁性材料,如馬達、電視機、變壓器、汽車等等內(nèi)部,不一而足。可以說,磁性材料已與現(xiàn)代人的生活息息相關(guān)。在材料科學(xué)的領(lǐng)域內(nèi),它回類在「電子材料」裏面(與導(dǎo)電材料、盡緣體、半導(dǎo)體等并列)。但具有磁性之材料又涵蓋金屬材料、陶瓷材料,甚至於高分子材料。它的形態(tài)還包括塊料(b1uk)、粉體(particulate)及薄膜(thinfilm)等。因此磁性材料本身為具有多元化角色的材料。以物理學(xué)的觀點來說,任何材料都是磁性材料,也就是說,每一種材料都有一定的磁現(xiàn)象。有的在磁場內(nèi)會抵消一小部分磁場強度,呈現(xiàn)「反磁性」(diamagnetism),如銅;有的在磁場內(nèi)有微小的正感應(yīng),呈現(xiàn)「順磁性」(paramagnetism),如空氣;有的在磁場內(nèi)會感應(yīng)產(chǎn)生很強的磁性量——稱為磁化量(magnetization),呈現(xiàn)鐵磁性(ferromagnetism,又稱強磁性)或者亞鐵磁性(ferrimagnetism,又稱亞強磁性)等種類繁多。在產(chǎn)業(yè)上,只有具強磁性或亞強磁性的材料才能加以利用。但在物理、化學(xué)及醫(yī)學(xué)上,其他類型的磁性也有很大的功用。最有趣的例子是,醫(yī)學(xué)上利用人體器官分子的磁共振,可以迅速作完全身健康檢查,由器官分子的「磁性」,可以檢測病變之有無,所使用的設(shè)備叫做MRI(magneticresonanceimaging)。在此,只擬介紹產(chǎn)業(yè)應(yīng)用價值較大的強磁性及亞強磁性材料(永久及暫時磁性材料;半永久性者種類及應(yīng)用較少,限於篇幅不談)。磁性的由來直到二十世紀以前,人們(包括科學(xué)家)對物質(zhì)磁性的了解,不會比我們的老祖宗在數(shù)百、甚至於數(shù)千年前的了解好到那裏往。最近七十多年來,靠著很多受過嚴密科學(xué)練習(xí)的物理家、化學(xué)家及數(shù)學(xué)家不斷的努力,終能逐漸解開它神秘的面紗,一窺其全貌。讓我們循著先哲的路線來了解磁性的起源。由實驗得知,兩磁極間有相吸或相斥之力,稱為磁力。因此由力的丈量,可以得知「磁」的大小。有力就會有力矩,因磁所起的力矩稱為「磁矩」(magneticmoment)。早期科學(xué)家(例如法拉第、居里等人)嘗試在磁場內(nèi)丈量物質(zhì)所含磁矩之大小及其隨溫度變化的關(guān)系,從而發(fā)現(xiàn)不同物質(zhì)的不同反應(yīng)。一物體所含磁矩之量稱為「磁化量」。單位磁場所能引起的磁化量稱為「磁化率」(magneticsusceptibility),由磁化率對溫度的定量關(guān)系,吾人便可定義反磁性、順磁性及強磁性等的不同。但何以如此?仍然沒有答案。首先,磁矩是什麼呢?若將磁鐵一再分割,每一新得之顆粒皆為一新的磁鐵,具有南、北(N、S)極,分割到最小而仍會保有N、S兩極的即為磁矩。目前,我們已知電子自旋或公轉(zhuǎn),就造成此種最小單位(比如電流繞
線圈
活動造成磁場)。換句話說,磁矩就是電子運動(公轉(zhuǎn)、自轉(zhuǎn)),未被抵消的凈量,亦即為磁陀(magneticspin)之凈值。除反磁性物質(zhì)以外,所有其他物質(zhì)在磁場內(nèi)都有或多或少的磁矩,可以定量地量測出來,很顯然地它們都含有磁性的原子(分子)。那麼強磁性是怎麼來的呢?何以同樣含有磁性原子而有的是強磁性,有的卻沒有呢?1907年,魏斯(Weiss)重復(fù)居理於1895年的實驗,再配合數(shù)學(xué)家藍古文(Langeuim)的理論,假設(shè)磁性「分子」(當時以為分子是物質(zhì)之最小單位)間有相互作用,稱為分子場(molecularfield),并大膽推斷非強磁性物質(zhì)之分子場很小,而強磁性物質(zhì)之分子場非常大,大到足以使「分子」之磁矩同向排列而達飽和。溫度高到居里點(編注:鐵磁性物質(zhì)由強磁性變?yōu)轫槾判詴r的溫度,稱為居里點)以上時,熱能破壞了分子場的排列作用,使磁性「分子」混亂,即為順磁性。然則,何以大部分鐵、鈷、鎳等強磁性元素不會吸引別的鐵、鈷、鎳呢?既然它們內(nèi)部已磁化到飽和,應(yīng)可作為很強的永久磁鐵才是啊。魏斯又提出另一個大膽假設(shè),那就是物系為降低自由能以達安定化,會進步亂度。強磁性物質(zhì)內(nèi)部自動分成很多小區(qū)域,稱為磁區(qū)(magneticdomain)。在同一磁區(qū)內(nèi)磁化方向是一致的,不同磁區(qū)間的磁化方向不同且呈混亂化,故互相抵消,平常感覺不到它有磁性,只有在磁場內(nèi)加以磁化,打破磁區(qū)之混亂狀態(tài),才能感受到它的強磁性。后人的實驗(1931年)印證此一「預(yù)言」(見圖一),使魏斯名垂千古,其大膽假設(shè)、小心求證的治學(xué)態(tài)度更是為人津津樂道的原則。1948年,魏斯的門生尼爾(Néel)繼續(xù)他的研究,發(fā)現(xiàn)某些物質(zhì)原子的磁矩受結(jié)晶格子影響很大,且分子場的作用很強,為負的,導(dǎo)致相鄰原子列之磁化方向相反。若大小相等則完全抵消,呈現(xiàn)「反強磁性」(antiferromagnetism)。若大小不等,則呈現(xiàn)「亞強磁性」;至此,物質(zhì)之「磁」現(xiàn)象原理已大致揭曉,尼爾因而在1970年榮獲諾貝爾物理獎。磁性材料的磁現(xiàn)象由磁區(qū)之消長來決定。磁區(qū)與磁區(qū)之間的界面稱為磁區(qū)壁(domainwall),其內(nèi)磁陀由一個方向逐漸轉(zhuǎn)至另一方向,它很薄,只有數(shù)十至數(shù)百埃(Å)。磁性材料的磁區(qū)壁假如能隨外加磁場的變動而隨時移動,該材料即是很輕易被磁化到飽和,也很輕易消磁;反之,假如想法阻礙磁區(qū)壁的運動,則被磁化到飽和后該材料便不易被消磁。前者呈現(xiàn)暫時磁性,后者呈現(xiàn)永久磁性。磁性材料學(xué)家的工作即在於:利用固態(tài)物理、材料工程學(xué)、物理冶金學(xué)、機械冶金學(xué)等學(xué)理或技術(shù),控制磁性材料的成分、顯微結(jié)構(gòu)而使其性質(zhì)合於所需。永久磁性材料及其應(yīng)用磁性材料的優(yōu)劣常以磁滯曲線(hysteresisloop,見圖二),所呈現(xiàn)的數(shù)據(jù)表示之。圖上OBs表磁化曲線,其上於原點的切線斜率稱為初導(dǎo)磁率(initialpermeability,μo),割線斜率代表特定的B/H(磁感應(yīng)/磁場強度)比值,最大者即為最大導(dǎo)磁率(μm)。Bs點代表飽和磁感應(yīng)(saturationinduction)單位以千高斯(kG)表示;Br點為殘留磁感應(yīng);Hc點稱為保磁力或矯頑磁力〔coerciveforce,單位為Oe或kOe,1Oe相當於(1000/4π)A/m〕。在第二象限之磁滯曲線上任一點都代表一特定之B×H值(對B、H投影線所圍面積),其最大者稱為最大磁能積〔maximumenergyproduct,簡寫為(BH)m,單位G.Oe,以百萬倍表之則為MGOe〕。永久磁性材料講究Hc、Br及(BH)m愈大愈好,尤其(BH)m,它代表該磁鐵磁化后所貯存在內(nèi)部的能量,(BH)m值愈大代表它愈能對外作功,就像永不枯竭的電池一樣,若Hc夠大(數(shù)千Oe以上),居里溫度夠高,它便不易被消(退)磁。工程上Hc>200Oe者,便可稱為永久磁鐵。十九世紀末至二十世紀初,可用的永久磁鐵只有淬火碳鋼。碳鋼淬火硬化,Hc即升高,愈硬者Hc愈高,故永久磁性又稱「硬」磁性;反之退火軟化者呈現(xiàn)暫時磁性,或「軟」磁性。淬火鋼Hc只有50~70Oe,(BH)m只有0.2~0.3MGOe。1916年,科學(xué)家在碳鋼內(nèi)添加Cr、W、Co,使Hc增至145~250Oe,(BH)m近於1MGOe,在當時是很大的突破。1931年日人三島發(fā)明Fe-Ni-Al三元合金磁鐵,Hc高達500Oe(BH)m則達1.4MGOe,打開近代永磁材料發(fā)展的大門。以Fe-Al-Ni為主,添加Co、Cu、Si、Ti等元素改進而成的Alnico合金,直到1970年以前一直是永久磁鐵的主流。材料科學(xué)家藉合金設(shè)計的法則,控制其相變化,使產(chǎn)生離相分解反應(yīng)(spinodaldecomposition);并在磁場內(nèi)冷卻,令分解所得之相沿磁場方向生長而得異方性很高的優(yōu)秀磁鐵,Hc達600~2000Oe,(BH)m為3~12MGOe間,可藉合金組成分及熱處理而調(diào)整磁性材料的特性。時至本日,雖大量更新式或價廉之永磁已逐漸取而代之,但它極為穩(wěn)定的磁性(可應(yīng)用至500℃之高溫,使它在某些特定的應(yīng)用(如微波通訊)上,仍然不易遭淘汰。1970年代發(fā)明之Fe-Cr-Co永磁合金即采用Alnico之原理設(shè)計出來,其磁性亦與Alnico合金相當,筆者曾作過多年研究,圖三即顯示利用磁場熱處理,使Fe28Cr-12Co-Ti合金的離相分解沿磁場方向排列的情況。分解出來的顆粒均勻直徑約300Å,均勻長度約1200Å,磁區(qū)壁在其內(nèi)之運動極其困難,故Hc值很高,成為永久磁鐵。1932~1938年間,在日、荷兩地開始發(fā)展的磁性氧化物——鐵氧體(ferrites),為本日永久磁性材料主流之一。鐵氧體的主要成分為Ba0.6Fe2O3及Sr0.6Fe2O3,屬於六方晶系;其Hc約1.8~3.2kOe,Br約2.2~4.3,(BH)m約1.0~4.0MGOe(視添加劑及裝程等而異)。由於價廉、制取輕易,應(yīng)用很廣,目前臺灣月需2,000余噸,約3/4自制。1969年,材料科學(xué)家研制成功稀土-鈷化物的永久磁鐵,為永久磁鐵開辟了另一片新天地。近二十年來,稀土永久磁鐵有長足進步。自最早之SmCo5合金而Sm(Co,Fe,Cu,Zr)7.2-8.5(即Sm2CO17型)合金,到最近的Nd2Fe14B合金(1984年起),磁能積從破紀錄的20MGOe(SmCo5)到30MGOe(Sm2Co17型)再到50MGOe(Nd-Fe-B合金),呈現(xiàn)奔騰式的進展,這都是回功於材料科學(xué)的研究與發(fā)展。國內(nèi)目前在這方面的研究與開發(fā)工作已與國際同步,產(chǎn)業(yè)產(chǎn)制也展開,為很有潛力的高科技產(chǎn)業(yè)。圖四為筆者所研究的Nd-Fe-B合金之高解像電子顯微鏡照片,顯示兩顆Nd2Fe14B晶粒間的粒界有一層體心立方(bcc)相的構(gòu)造,晶粒內(nèi)之平行線紋為c平面之格子像。其他的永磁材料還有很多,例如Cu-Ni-Co合金、Mn-Al-C合金及Pt-Co合金等,還有不下十余種,限於篇幅無法逐一介紹。在永久磁性材料中,有一些是體積很小而功效很大的「磁紀錄材料」(magneticrecordingmaterial):粉末狀的有γ-Fe2O3、CrO2、Fe4N,金屬粉如Fe粉、Fe-Co合金粉等,大量用於錄音帶、錄影帶、磁碟等產(chǎn)業(yè);另有制成薄膜狀的Fe-Ni、Fe-Ni-P、Fe-Ni-Cr、Fe-Ni-Co等用於硬式磁碟,Co-Cr用於垂直紀錄,Tb-Fe-Co及Gd-Co等用於可讀寫的磁光紀錄等。永磁材料如前所述是一貯能裝置,只要設(shè)計得當,它便能作功,上述之「紀錄」即為一例。其他的應(yīng)用場合包括:喇叭、馬達、發(fā)電機、計器、吸著裝置、磁選機等不勝枚舉。暫時磁性材料及其應(yīng)用暫時磁性材料系在受到磁化(例如繞在其外面的
線圈
通上電流時)后呈現(xiàn)很強的磁性,磁化場移除后,馬上消磁的材料。因此,可以用在交流電機上,甚至於高頻及超高頻的應(yīng)用場合。其應(yīng)用上的要求是導(dǎo)磁率及Bs值愈高愈佳,Hc值愈低愈佳(因此B×H值——代表磁損,愈?。?。以發(fā)展的歷程來說,暫時磁性材料(即軟磁材料)比永磁材料更早,而且成果較豐富。例如純鐵本身即為甚佳之軟磁材料,自十九世紀末即開始使用,目前的用量仍然很大。1910年代Fe-Ni合金即已由美國貝爾實驗室發(fā)明出來,后來稱為高導(dǎo)磁合金(permalloy);到1950年代其μ0值(見圖二)已可高達100,000,稱為超導(dǎo)磁合金(supermalloy)。其磁性受鎳含量、軋延及退火方式等的影響甚大。矽鋼片首創(chuàng)於1900年前后,至1930年制成方向性矽鋼片以來,它已成為電機用軟磁合金的主流。這些軟性合金因系導(dǎo)體,大多只適合於低頻應(yīng)用的場合。鐵氧體軟磁材料以尖晶石晶系為主;一般式為MFe2O4,M為二價離子,如Mn++、Zn++、Ni++、Cu++、Mg++、Co++,甚至於Fe++等,例如目前市面上最常見的(Mn,Zn)Fe2O4、(Ni,Zn).Fe2O4及(Mn,Mg)Fe2O4等。因鐵氧體軟磁材料系氧化物,電阻大,適用於高頻(100MHz以下的場合。若是超高頻,如100MHz~500GHz(微波范圍)則需柘榴石系鐵氧磁體——Y3Fe5O12及其衍生物。1958年,杜威齊(Duwez)發(fā)明非晶質(zhì)合金(amorphousalloy)裝置以來,非晶合金〔又稱為金屬玻璃(metallicglass)〕的磁性及機械性便非常受重視,并於1970~1980年間形成很大的一股研究高潮。美國Allied公司於1974年,開始推出商用的非晶薄帶,其Bs高達16kG,Hc極?。?.01Oe以下),電阻較矽鋼片高,因此用它制成變壓器,磁損遠低於矽鋼片者,為最被看好的下一世代軟磁性材料。軟磁性材料廣泛應(yīng)用於下列各方面:一通訊方面——電感器、濾波器、天線棒等。二電力方面——變壓器、馬達、發(fā)電機、阻流器等。三消費性產(chǎn)品方面——電視機偏向軛及馳返變壓器、阻流
線圈
等。四磁頭方面——錄音用磁頭(高導(dǎo)磁合金)、錄影用磁頭(Fe-Si-Al合金)、電腦用磁頭(Mn-Zn鐵氧體)等。五其他用途如磁遮蔽器、磁放大器、切換磁心及高級電磁鐵等。磁性材料是一多樣化的材料涵蓋金屬及非金屬(陶瓷),薄膜、粉粒及塊料;其應(yīng)用范圍廣及機械、電機、電子、資訊、交通、家用用具;其研究的基礎(chǔ)又有賴於固態(tài)物理、材料科學(xué)及材料工程。因此,磁性材料是一種「吸力很強」的材料,它在「兼容并蓄」中快速茁壯成長。我國的磁性材料產(chǎn)業(yè)已有近二十年的歷史,磁性材料研究則僅有十余年歷史,固然也小有成績,但與產(chǎn)業(yè)先進國家比較,仍落后甚遠,需要政府、企業(yè)界及學(xué)術(shù)界多方面配合,投進人力、財力,以提升磁性材料的技術(shù)層次。由於它是多樣化的技術(shù),其提升也能帶動其他相關(guān)技術(shù)的進步。我們鄰國日本對磁性材料的重視、提倡與投資,堪為我們的借鏡。
上一個:
安全閥的安裝、使用及維護
下一個:
硬質(zhì)軟磁合金高溫如何處理
相關(guān)新聞
電動閥與電磁閥的選型知識_電動閥與電磁的差別
2018-05-16
電動閥使用途徑_電動閥特點_電動閥常規(guī)問題
2018-05-16
中央空調(diào)電動閥有哪些規(guī)格和品種
2018-05-16
微型電磁閥的構(gòu)造原理與裝置介紹說明
2018-05-16
小型氣泵的用途及優(yōu)勢
2018-05-16
欄目導(dǎo)航
常見問題
+
品牌資訊
+
行業(yè)應(yīng)用
+
新聞中心
噴墨行業(yè)
2024-09-22
00457204 氟橡膠FKM電磁閥 口徑4mm 介質(zhì)隔離式 burkert
2024-03-17
6213型 膜片電磁閥 00246310 接口G1 內(nèi)螺紋 不銹鋼 burkert
2024-03-17
burkert電磁閥 00125301直動式 6013型
2024-03-17
AFRISO 壓力表 85214731S 氣體檢測 菲索
2023-07-02
聯(lián)系我們
CONTACT US
聯(lián)系人:彭工
手機:18918462396
電話:021-59718851
郵箱:
[email protected]
地址: 上海市青浦區(qū)青浦工業(yè)園清河灣路819弄
分享
0
手機
分類
頂部
關(guān)閉
產(chǎn)品報價
KUNAG
KUNAG
KUNAGE
0
關(guān)閉
用手機掃描二維碼
關(guān)閉
侠女当众被迫高潮h高
|
91福利国产在线观看
|
一级A片久久久免费直播间
|
日本女优裸体视频
|
欧美色图视频一区
|
一级A片在线播放
|
天天透逼
|
五月丁香激情婷婷
|
巨爆乳少妇无码一区二区毛片
|
好紧好硬好硬爽小说
|